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1 Introduction

This note is addressed to students and other inquisitive people that want to approach the field of

Population Genetics browsing the Web to learn basic ideas and results. Unfortunately, the many

Web pages that deal with the Hardy−Weinberg principle, the Wright−Fisher model and Genetic

Drift, are often plagued by misinterpretations, bad language/exposition and lack of accuracy that

can ingenerate confusion. In fact, Population Genetics has developed, for historical reasons, a

language and denominations that sometimes are in conflict with the terms used in probability

theory, whom the cited topics use in large measure. Here we address such topics detailing the

underlying framework with the correct probabilistic assumptions and terms, show how the main

results are derived, provide the correct interpretations and underline the critical misinterpretation

points.

We give for granted the knowledge of the basic probability theory and the Mendel’s laws. We do

not provide examples or graphs since many of them can be retrieved in the Internet. We do not

give references about the topic investigated and the the probabilistic tools we use, i.e., Markov

Chain, since they are common teaching material whose references, again, can easily be retrieved

in the Internet.

2 Assumptions

We refer to the example usually dealt with in Population Genetics, where a population of indivi-

duals gives rise to subsequent generations all with the same number individuals N . Each element

of the population has a genotype composed of two alleles of a gene that can be of two different

types, say A and a, (e.g. dominant and recessive). The way in which each individual at generation
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n + 1 inherits its two alleles from the pool of alleles at generation n depends on the inheritance

laws that are assumed. We postulate two such laws:

Law 1. Each child allele at generation n + 1 is selected at random within the pool of alleles at

generation n.

Law 2. Each child genotype is inherited according to the Mendel’s laws by randomly selecting the

parent’s geneotypes.

No other effect influences the allele next generation outcome.

According to Law 1, if the genes A and a are in numbers r and 2N − r, the offspring probilities

are respectively

pA =
r

2N
, pa =

2N − r
2N

, pA + pa = 1. (1)

Now assume that genotypes are distributed according to the numbers u, v, z, u + v + z = N ,

with respect to genotypes (AA), (Aa), and (aa) respectively. Thus the genotypes are sected with

probabilities

pAA =
u

N
, pAa =

v

N
, paa =

z

N
, pAA + pAa + paa = 1. (2)

The probability that an inherited allele is of type A, and a, are given by

pA = pAA + pAa
1

2
, pa = paa + pAa

1

2
, pA + pa = 1, (3)

which, of course, are exactly the fraction of the corresponding number of alleles in the population:

pA =
2u+ v

2N
, pa =

2z + v

2N
, pA + pa = 1. (4)

Now, by Law 2 (we assume for granted Mendel’s laws) the probability that the inherited genotype

is an AA type can be evaluated as

p′AA = p2AA + pAApAa + p2Aa

1

4
=

(
pAA + pAa

1

2

)2

= p2A, (5)

where the last equality comes from (3). In the same way we can prove that

p′Aa = 2pApa, p′aa = p2a. (6)

Eqs. (5) and (6) prove the following
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Property 1. The distribution of alleles in a genotype inherited with Law 2 is the same we get by

selecting at random and independently the alleles in the genotypes with Law 1.

Since by Property 1 the statistics of genotypes can be derived from the distribution of alleles by

(5) and (6), to study the evolution of genotypes generation by generation we can simply refer to

the evolution of alleles, that depend on the simpler Law 1. This law, and the assumption that

generations do not overlap, yield the model known in the literature as the Wright−Fisher model,

which is analized next.

3 Analysis

3.1 The probability distribution

According to the Wright−Fisher model, we study the random variable NA(n), defined as the

number of alleles of type A at generation n, being the number of type a allele given by 2N−NA(n).

The random selection of parents at different generations NA changes from one generation to the

next, giving rise to a sequence of random variables NA(0), NA(1), NA(2), . . .NA(n). . . , that in

probability theory is called a stochastic process.

If we are given many populations, each population with the same number 2N of alleles starting at

generation 0 with the same number NA(0) = r of type A alleles, and using the same inheritance

laws, we turn out with many sequences, one for each population:

r, N ′A(1), N ′A(2), . . . N ′A(n), . . .

r, N ′′A(1), N ′′A(2), . . . N ′′A(n), . . .

r, N ′′′A (1), N ′′′A (2), . . . N ′′′A (n), . . .

Not only the values at different generations, n > 0, of each sequence, are usually different, but

they are different also with respect to populations because, again, the random selection mechanism

operates randomly and independently in each population. Genetists call the sequences (1) samples,

whereas mathematician call them realizations or sample paths of the process.

Actually the process NA(n) under consideration is a very specific one, known by mathematicians

as Markov Chain. This chain is probabilistically described at each generation n by the row vector

Π(n) composed of the probability distribution of the number NA, i.e., the vector’s 2N+1 elements
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are:

Pr(NA(n) = 0), P r(NA(n) = 1), P r(NA(n) = 2), . . .

. . . P r(NA(n) = 2N − 1), P r(NA(n) = 2N). (7)

where Pr(NA(n) = k) is the probability that the number of type A allele at generation n is equal

to k.

If we start at generation 0 with a given number Na(0) = r of type A alleles, generation 1 is

attained, by Law 1, as if flipping coins with the A outcome having probability p1 = pA = r/2N .

Therefore, we can say

Property 2. The distribution of NA(1), at generation 1, is given by the Binomial distribution

of parameters r and p1 = r/2N :

Pr(NA(1) = k) =

(
2N

k

)
pk1(1− p1)n−k, 0 ≤ k ≤ 2N. (8)

Things become a little more complex for subsequent generations. Shortly, if in a sample path at

generation n we observe NA(n) = i, then again the conditional distribution at generation n+ 1 is

given by the Binomial distribution of parameters i and pn = i/2N . In order to get the distribution,

over all sample paths, we must average all the conditional distributions (vectors) at n + 1 with

the distribution at time n. This means building the matrix Q (the transition matrix) whose rows

are composed by the conditional distributions for all i; then distribution Π(n + 1) is attained as

the following matrix product

Π(n+ 1) = Π(n)Q. (9)

Therefore we have:

Property 3. The probability distribution at any time n is attained by recursively applying (9)

starting from row vector:

Π(0) = [0 0 0 . . . 0 1 0 . . . 0 0], (10)

where the only 1 is in position r.

In practice the evaluation complexity of (9) is such that we can numerically derive the distribution,

generation by generation, only if N is not too large, up to one hundred or so. The theory also

assures that the Markov Chain NA(n) reaches an n∗ (that changes from sequence to sequence)

after which the chain will reach absorbing states, i.e., either NA(n) = 2N , where all alleles will be
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of the A type and no further change is possible, or NA(n) = 0, where all alleles will be of the a

type and no further change is possible (genetists call this fixation and loss of A respectively, and

the reverse for allele a). This result can be summarized into

Property 4. The number of alleles changes with generations, and ends up either with NA = 2N

or NA = 0.

This means that for all n > n∗ the distribution vector in (7) is always the same and equal to:

1− α, 0, 0, . . . 0, α (11)

where α = Pr(NA(n) = 2N) represents the probability that type A allele becomes fixed. Of

course the actual value of α depends on NA(0), the number of type A alleles at generation 0, and

increases, from 0 to 1 as NA(0) increses from 0 to 2N . The value of α is determined as we explain

later in Section 3.3.

An interesting case in genetics is when NA(0) = 1, modeling the case of mutation, where at

generation 0 a new allele appears among a population of 2N equal alleles. The probability that

the mutated allele is lost after one generation is the probability that none the 2N individuals of

the following generation selects the mutated allele, i.e., the probability in (8) with k = 0 and

p1 = 1/2N . Then we have

Pr(NA(1) = 0) =

(
1− 1

2N

)2N

−→ e−1 ≈ 0.368,

where the limit on the left is attained for N →∞. Therefore, for large populations, the probability

that a mutation is loss immediately after being generated is almost 37%.

Quite often instead of referring to NA, the literature refers to fA = NA/2N , which is called the

frequency of allele A, and by genetists the sample frequency or the observed frequency. Dividing

by the constant 2N does change the units but does not change the dynamic of the process and,

therefore, the values of the probability distribution of the frequency fA is simply derived as

Pr(fA = i/2N) = Pr(NA = i),

so that results about frequencies are immediately derived from the results about NA. In term of

frequencies Property 4 becomes:

Property 5. The frequency of alleles changes with generations, and ends up either with fA = 1

or fA = 0.
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3.2 The average of the distribution

Property 3 shows that the distribution at generation n = 1 can be easily derived as the Binomial

distribution ((8)). The average (expectation) of the Binomial distribution is

E [NA(1)] = 2Np1 = r,

that is, NA(1) changes over different sample paths, but its average is still equal to r, i.e. the value

of NA(0). This is a direct consequence of the inheritance law given a precise number r of type A

alleles; how about next generations where NA(n) no longer corresponds to a precise number being

a random variable? The answer is in the following

Property 6. The average number of alleles does not change with generations.

Therefore we have

E [NA(n)] = r, ∀n, (12)

even though NA(n), for n > 1, is no longer binomial. The proof is based on the conditional

expectation, symbolized by the formula

E [NA(n+ 1)] = E [E [NA(n+ 1)|NA(n)]] . (13)

In deriving (9) we saw that, once we know the outcome of generation n, say NA(n) = x, the

outcome at n+ 1 is still a binomial, whose average is

E [NA(n+ 1)|NA(n)] = 2Npn+1,

and being pn+1 = NA(n)/2N we get

E [NA(n+ 1)|NA(n)] = NA(n).

Finally (13) yields

E [NA(n+ 1)] = E [NA(n)] . ∀n. (14)

Result (12) comes by recursively applying the above starting from n = 1.

Dealing with frequencies, which means dividing by 2N , we have

E [fA(n)] =
r

2N
= p1, ∀n, (15)

where the last passage comes from (1), since p1 = pA. Therefore we can state

Property 7. The average frequency of alleles does not change with generations.
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3.3 The allele fixation

After the fixation of A, or a, has occurred the expectation is

E [NA(n)] = α2N n > n∗.

and, by Property 6, and (12), it equals r, so that we can derive α as

α = r/2N = p1,

and we have

Property 8. The fixation probability of the allele equals the original frequency of the allele itself.

As an example, if at n = 0 in a population of size N = 1000 we have NA = 20, then the probability

that A becomes fixed is 10%, whereas 90% is the probability that allele a becomes fixed.

Markov Chain theory also teaches how to evaluate the average times T it takes to absorption

(either fixation or loss of the allele), and the conditional average time to fixation (absorption)

TA given that fixation occurs. Unfortunately no close form exists for such times; however, the

following approximated formulas have been proved to provide good results:

T = −4N (p1 ln p1 + (1− p1) ln(1− p1)) , (16)

TA = −4N
(1− p1) ln(1− p1)

p
. (17)

The value of T is (obviously) maximum for p1 = 0.5, where we have T ≈ 2.8N , and is zero for

p1 = 0. When we have a single type A allele, as it happens with mutations, the probability it

becomimg fixed is p1 = 1/2N (Property 8), and (17) correspondingly provides (p1 → 0), TA ≈ 4N .

3.4 The variance of the distribution

We have seen that the average number of alleles does not change with generations, but the distri-

bution does, starting from (10) and ending in (11). A measure of this variation is the variance of

random variable NA(n):

VAR [NA(n)] = E
[
(NA(n)− E [NA(n)])2

]
.

Using (10) and (11) we get

VAR [NA(0)] = 0, VAR [NA(n)] = 4p1N
2(1− p1), n > n∗.
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and for the frequency:

VAR [fA(0)] = 0, VAR [fA(n)] = p1(1− p1), n > n∗.

For intermediate values of n the variance can be approximated as

VAR [fA(n)] ≈ p1(1− p1)
(
1− e−n/2N

)
. (18)

3.5 Large numbers

The main law that makes Probability Theory useful is the law of large numbers. This law states

that the frequency NX/N of an observation X in N repetitions of an experiment tends, as N

increases, to the probability pX that such an observation occurs in a single experiment. We write

this as:

limN→∞
NX

N
= pX .

Actually the meaning of the lim operation above is complex to explain. However, what is relevant

here is that, for large N , we can assume:

NX

N
≈ pX .

In our case, N is the population size, actually 2N if we refer to alleles. If in a generation we

observe NA occurrences of the type A allele under a given inheritance law then, if N is very large,

the frequency NA/2N practically coincides with pA, the probability of occurrence of allele A in a

single experiment on the inheritance law. Then, if we consider the multiple paths of our genetic

process, all the frequencies over all paths tends to the same (frequency) pA, which also coincides

with the average frequency. This is also confirmed by the variance (18) going to zero when N goes

to infinity. Property 7 then becomes

Property 9. In an infinite population the frequency of alleles does not change with generations.

4 The genetic drift

The change of the frequency with generations is what genetists call genetic drift. In Property 5

we have stressed the fact that the frequency of alleles always changes with generations. This is to

warn against statements often found in Population Genetics affirming that for large populations
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the frequency of alleles does not change, which is not mathematically correct except with an infinite

population size (Property 9), which does not exists. However, the difference in the variance (18)

between two generations is

VAR [fA(n+ 1)]− VAR [fA(n)] ≈ p1(1− p1)
(
e−n/2N − e−(n+1)/2N

)
= p1(1− p1)e−n/2N

(
1− e−1/2N

)
≈ p1(1− p1)e−n/2N

1

2N
. (19)

where the last approximation holds for large population size N , where 1/2N << 1. Therefore we

understand that for N > 1000 this change can be neglected, and for still larger N the change can

be neglected over several generations.

In the case of a new mutated allele, as seen in Section 3, the probability it becomes fixed is 1/N ,

very small indeed for large N , which shows that some other mechanisms must intervene to help

the allele fixation, and increase genetic variation, as observed in nature. The most accepted effects

that help fixation are the bottleneck effect and the founder effect. In both cases the population

happens to be restricted to a small number N , which makes fixation more probable. When the

population size increases, also because of migrations, natural selection causes an increases in the

frequency of an allele that makes individuals more fit to survivability.

5 The Hardy−Weinberg principle

In the Wright−Fisher model with an infinite population the frequencies of alleles do not chan-

ge from generation to generation (Property 9). Hardy was asked what about the frequency of

genotypes.

Given the genotype population probability distribution as in (2), under the Mendel’s laws and the

other conditions of the the Wright−Fisher model, the genotype probability distribution of a new

generation individual is given by

p′AA = p2AA + pAApAa + p2Aa

1

4
=

(
pAA + pAa

1

2

)2

, (20)

p′Aa = 2

(
pAA + pAa

1

2

)(
paa + pAa

1

2

)
, (21)

p′aa = p2aa + paapAa + p2Aa

1

4
=

(
paa + pAa

1

2

)2

, (22)

being (20) equal to (5).
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Because it is pAA + pAa + paa = 1, and due to the specific form of (20)-(22), in order to get the

same distribution, i.e. p′ = p, we need only to impose the equality to one of them. If we impose

p′Aa = pAa using the above we have

pAa
1

2
=

(
pAA + pAa

1

2

)(
paa + pAa

1

2

)
= pAa

1

2
(pAA + paa) + pAApaa + p2Aa

1

4

= pAa
1

2
(1− pAa) + pAApaa + p2Aa

1

4
which provides

1

4
p2Aa = pAApaa. (23)

The (23) is known as the Hardy−Weinberg’s condition.

We note that we must explicitly select the distribution u, v and z at generation 0 if we want condi-

tion (23) to be met, i.e., if we want the distributions at generation 0 and 1 be the same. However,

whatever the distribution u, v and z at generation 0, Property 1 assures that the distribution at

generation 1 obey the Hardy−Weinberg’s condition (23). In fact, for such a population, owing to

(5) and (6), the two terms of (23) become

1

4
p2Aa = p2Ap

2
a

pAApaa = p2Ap
2
a.

This assures that the distribution at generation 2 and all the subsequent, are equal to the di-

stribution at generation 1, whatever the distribution at generation 0. This can be resumed

into

Property 10. When the three genotypes are derived by randomly and independently selcting the

alleles of each genotype according to Property 1, the Hardy−Weinberg’s condition (23) is satisfied.

This means that Properties 7 and 9 also holds for genotype frequencies:

Property 11. When generations of an infinite population are derived according to Law 2, the

genotype frequencies NAA(n)/N, NAa(n)/N and Naa(n)/N , do not change with all n ≥ 1.

Property 12. When generations of a finite population are derived according to Law 2, the geno-

type average frequencies E [NAA(n)/N ] , E [NAa(n)/N ] and E [Naa(n)/N ], do not change with all

n ≥ 1.

As often stated in the literature, the Hardy−Weinberg principle is explained as guaranteeing

Proposition 11; actually, this is rather restrictive with respect to the principle implications. In
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fact it implies Proposition 12, which does not need the infinite population assumptions. The real

meaning of the principle lies in its reverse, namely the fact that,

Property 13. If the condition of Hardy−Weinberg is not satisfied, then the Wright−Fisher model

must be rejected.

Given that the Mendel’s laws constitute a well established fact, a failure of the Hardy−Weinberg

condition on real populations indicates that either mating is not casual or other non-random selec-

tion ways, such as natural selection, intervene changing the genotype frequency in the population.
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